Part Number Hot Search : 
AA1A3QC PTC60 OP420G LD6805 BCR112 SMAJ12 V400CBTC 1N5408
Product Description
Full Text Search
 

To Download IRF3711ZSTRL Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 10/30/03 irf3711z irf3711zs irf3711zl hexfet   power mosfet notes   through  are on page 12 applications benefits  low r ds(on) at 4.5v v gs  ultra-low gate impedance  fully characterized avalanche voltage and current  high frequency synchronous buck converters for computer processor power d 2 pak irf3711zs to-220ab irf3711z to-262 irf3711zl v dss r ds(on) max qg 20v 6.0m  16nc  absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v a i d @ t c = 100c continuous drain current, v gs @ 10v i dm pulsed drain current  p d @t c = 25c maximum power dissipation w p d @t c = 100c maximum power dissipation linear derating factor w/c t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw  thermal resistance parameter typ. max. units r jc junction-to-case  CCC 1.89 c/w r cs case-to-sink, flat greased surface  0.50 CCC r ja junction-to-ambient  CCC 62 r ja junction-to-ambient (pcb mount)  CCC 40 10 lbf  in (1.1n  m) 300 (1.6mm from case) -55 to + 175 79 0.53 40 max. 92  65  380 20 20 downloaded from: http:///
 
2 www.irf.com s d g static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 20 CCC CCC v ? v dss / ? t j breakdown voltage temp. coefficient CCC 0.013 CCC v/c r ds(on) static drain-to-source on-resistance CCC 4.8 6.0 m ? CCC 5.9 7.3 v gs(th) gate threshold voltage 1.55 2.0 2.45 v ? v gs(th) / ? t j gate threshold voltage coefficient CCC -5.6 CCC mv/c i dss drain-to-source leakage current CCC CCC 1.0 a CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 gfs forward transconductance 46 CCC CCC s q g total gate charge CCC 16 24 q gs1 pre-vth gate-to-source charge CCC 4.6 CCC q gs2 post-vth gate-to-source charge CCC 1.4 CCC nc q gd gate-to-drain charge CCC 5.3 CCC q godr gate charge overdrive CCC 4.7 CCC see fig. 16 q sw switch charge (q gs2 + q gd ) CCC 6.7 CCC q oss output charge CCC 9.5 CCC nc t d(on) turn-on delay time CCC 12 CCC t r rise time CCC 16 CCC t d(off) turn-off delay time CCC 15 CCC ns t f fall time CCC 5.4 CCC c iss input capacitance CCC 2150 CCC c oss output capacitance CCC 680 CCC pf c rss reverse transfer capacitance CCC 320 CCC avalanche characteristics parameter units e as single pulse avalanche energy  mj i ar avalanche current  a e ar repetitive avalanche energy  mj diode characteristics parameter min. typ. max. units i s continuous source current CCC CCC 92  (body diode) a i sm pulsed source current CCC CCC 380 (body diode)  v sd diode forward voltage CCC CCC 1.0 v t rr reverse recovery time CCC 16 24 ns q rr reverse recovery charge CCC 6.0 9.0 nc mosfet symbol v gs = 4.5v, i d = 12a  CCC v gs = 4.5v typ. CCCCCC i d = 12a v gs = 0v v ds = 10v t j = 25c, i f = 12a, v dd = 10v di/dt = 100a/s  t j = 25c, i s = 12a, v gs = 0v  showing the integral reverse p-n junction diode. v ds = v gs , i d = 250a v ds = 16v, v gs = 0v v ds = 16v, v gs = 0v, t j = 125c clamped inductive load v ds = 10v, i d = 12a v ds = 10v, v gs = 0v v dd = 10v, v gs = 4.5v  i d = 12a v ds = 10v conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 15a  v gs = 20v v gs = -20v conditions 7.9 max. 130 12 ? = 1.0mhz downloaded from: http:///
 
www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 3.0v vgs top 10v 9.0v 7.0v 5.0v 4.5v 4.0v 3.5v bottom 3.0v 0.1 1 10 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 175c 3.0v vgs top 10v 9.0v 7.0v 5.0v 4.5v 4.0v 3.5v bottom 3.0v 2.0 3.0 4.0 5.0 6.0 7.0 8.0 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 10v 60s pulse width t j = 25c t j = 175c -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 30a v gs = 10v downloaded from: http:///
 
4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 5 10 15 20 25 30 35 40 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 15v vds= 10v i d = 12a 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 1 10 100 v ds , drain-tosource voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec downloaded from: http:///
 
www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 i d , d r a i n c u r r e n t ( a ) limited by package -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 0.4 0.8 1.2 1.6 2.0 2.4 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.894 0.0003060.600 0.001019 0.401 0.006662 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci= i / ri ci= i / ri downloaded from: http:///
 
6 www.irf.com fig 13c. maximum avalanche energy vs. drain current 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 7.3a 8.6a bottom 12a fig 14a. switching time test circuit fig 14b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - fig 13b. unclamped inductive waveforms fig 13a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 12. on-resistance vs. gate voltage 2.0 4.0 6.0 8.0 10.0 v gs , gate-to-source voltage (v) 0.00 0.01 0.02 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ? ) t j = 25c t j = 125c i d = 15a downloaded from: http:///
 
www.irf.com 7 fig 15. 
 



   for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 16. gate charge test circuit fig 17. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr downloaded from: http:///
 
8 www.irf.com control fet  

   

      
 
   
 
 
          
   
   
 
  !"  
 #
 $  
 %& !" 

  
    #  
  


       
 
  
    #' p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) () + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? "     (
  

          
  %& !" 
  
      


  
   

     %& !" 
  
 "   
   
 
 
    

  
              )    

  


  #
 
  






   
      


    

* 

 

   
   
   % +      
 
    
         
  


 

 
 

  
 %& !"   # 
    #  ,         #
    
 
  
  
-   . 
 /         
 #
   #  
  
 synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be-tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca-pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic downloaded from: http:///
 
www.irf.com 9 

 dimensions are shown in millimeters (inches) lead assignments 1 - gate 2 - drain 3 - source 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) min 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 outline con forms to jedec outline to-220ab. 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. 

  
 example: in the assembly line "c" this is an irf1010 lot code 1789 as s emb led on ww 19, 1997 part number assembly lot code dat e code year 7 = 1997 line c week 19 logo rectifier international example: this is an irf1010 lot code 1789 as s embled on ww 19, 1997 in the assembly line "c" international rectifier logo lot code part number dat e code for gb production downloaded from: http:///
 
10 www.irf.com  


  
 f 530s t his is an irf 530s wit h lot code 8024 as s embled on ww 02, 2000 in the assembly line "l" assembly lot code international rectifier logo part number dat e code year 0 = 2000 week 02 line l  


 dimensions are shown in millimeters (inches) dat e code in the assembly line "l" as s embled on ww 02, 2000 t his is an irf 530s wit h lot code 8024 international logo rectifier lot code part number f 530s for gb production downloaded from: http:///
 
www.irf.com 11 to-262 package outline dimensions are shown in millimeters (inches) to-262 part marking information e x a m p l e : t h i s i s a n i r l 3 1 0 3 l l o t c o d e 1 7 8 9 a s s e m b l y p a r t n u m b e r d a t e c o d e w e e k 1 9 l i n e c l o t c o d e y e a r 7 = 1 9 9 7 a s s e m b l e d o n w w 1 9 , 1 9 9 7 i n t h e a s s e m b l y l i n e " c " l o g o r e c t i f i e r i n t e r n a t i o n a l  igbt 1- gate2- collec- tor downloaded from: http:///
 
12 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 10/03 
  repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 1.8mh, r g = 25 ? , i as = 12a.  pulse width 400s; duty cycle 2%.  this is only applied to to-220ab pakcage.  this is applied to d 2 pak, when mounted on 1" square pcb (fr- 4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994.  calculated continuous current based on maximum allowable junction temperature. package limitation current is 30a.   
   & 
   


 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. to-220ab package is not recommended for surface mount application. downloaded from: http:///
note: for the most current drawings please refer to the ir website at: http://www.irf.com/package/ downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRF3711ZSTRL

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X